Autor: |
Weiliang Jiang, Linzi Jin, Dapeng Ju, Zhanjun Lu, Chuanyang Wang, Xingya Guo, Haijiao Zhao, Shien Shen, Zhiyuan Cheng, Jie Shen, Guanzhao Zong, Jiahui Chen, Kai Li, Lijuan Yang, Zhijian Zhang, Yun Feng, Jia Z. Shen, Eric Erquan Zhang, Rong Wan |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Science translational medicine. 14(664) |
ISSN: |
1946-6242 |
Popis: |
Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor–related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock–TGF signaling–IL-11/IL-11RA axis–dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock–targeted therapy may represent a potential strategy to treat CP. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|