Popis: |
Fullerene (C60) spheres were successfully embedded by diffusion into a catalyst-free SiO2 sonogel network. By this method, homogeneous and stable solid state hybrid samples suitable for optical characterization were produced. Due to the high porosity exhibited by the sonogel matrix on the nanometric length-scale, the preparation of several C60 doped composites with variable dopant concentrations was achieved. The obtained bulk hybrids were irradiated with a pulsed Kr-F laser system in order to induce photo-polymerization of the implanted C60 guest molecules at optimal experimental conditions established according to the pulsed laser photoacoustic technique (LPAT). The adequate purity level displayed by the sonogel route allowed us to perform optimal optical characterizations of these composites (reference hybrids and photo-polymerized samples) in order to evaluate their photo-physical properties for potential photonic applications. In this work the sonolysis process used to prepare amorphous catalyst-free SiO2:C60 sonogel hybrids and their linear and nonlinear optical (NLO) properties are extensively discussed. UV-VIS absorption-, Photo Luminescent (PL)-, and Raman-spectroscopies in conjunction with nonlinear optical limiting (OL) measurements, gave experimental evidence of the inclusion of C60 molecules within the sonogel environment, the laser induced photo-polymerization process and the induced changes of the optical and NLO-properties. Results are discussed in combination with atomic force microscopy (AFM) studies in order to explore the surface morphology of these samples. |