Lie Derivatives and Ricci Tensor on Real Hypersurfaces in Complex Two-plane Grassmannians
Autor: | Imsoon Jeong, Juan de Dios Pérez, Changhwa Woo, Young Jin Suh |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Complex Variables General Mathematics Ricci flow Connection (mathematics) Algebra Einstein tensor symbols.namesake Mathematics::Algebraic Geometry Hypersurface Grassmannian Reeb vector field ComputingMethodologies_DOCUMENTANDTEXTPROCESSING symbols Ricci decomposition Mathematics::Differential Geometry GeneralLiterature_REFERENCE(e.g. dictionaries encyclopedias glossaries) Ricci curvature Mathematics |
Zdroj: | Digibug. Repositorio Institucional de la Universidad de Granada instname |
ISSN: | 1496-4287 0008-4395 |
DOI: | 10.4153/cmb-2017-049-5 |
Popis: | On a real hypersurface M in a complex two-plane Grassmannian G2() we have the Lie derivation and a differential operator of order one associated with the generalized Tanaka–Webster connection . We give a classification of real hypersurfaces M on G2() satisfying , where ξ is the Reeb vector field on M and S the Ricci tensor of M. |
Databáze: | OpenAIRE |
Externí odkaz: |