Global dynamics of perturbation of certain rational difference equation
Autor: | Zehra Nurkanović, Mustafa R. S. Kulenović, Sabina Hrustić, Samra Moranjkić |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Volume: 43, Issue: 2 894-915 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | We investigate the global asymptotic stability of the difference equation of the form \begin{equation*} x_{n+1}=\frac{A x_{n}^{2}+F}{a x_{n}^{2}+e x_{n-1}}, \quad n=0,1,\ldots, \end{equation*}% with positive parameters and nonnegative initial conditions such that $x_0 + x_{-1}>0$. The map associated to this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability. |
Databáze: | OpenAIRE |
Externí odkaz: |