Global dynamics of perturbation of certain rational difference equation

Autor: Zehra Nurkanović, Mustafa R. S. Kulenović, Sabina Hrustić, Samra Moranjkić
Rok vydání: 2019
Předmět:
Zdroj: Volume: 43, Issue: 2 894-915
Turkish Journal of Mathematics
ISSN: 1300-0098
1303-6149
Popis: We investigate the global asymptotic stability of the difference equation of the form \begin{equation*} x_{n+1}=\frac{A x_{n}^{2}+F}{a x_{n}^{2}+e x_{n-1}}, \quad n=0,1,\ldots, \end{equation*}% with positive parameters and nonnegative initial conditions such that $x_0 + x_{-1}>0$. The map associated to this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability.
Databáze: OpenAIRE