Interaction between biofilm growth and NAPL remediation: A pore-scale study

Autor: C. Oltean, P. Fischer, Xiaofan Yang, M. Benioug, Fabrice Golfier, Michel Buès
Přispěvatelé: Beijing Computational Science Research Center [Beijing] (CSRC), GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University (BNU), ANR-10-BLAN-0908,MOBIOPOR,Modélisation de la biodégradation de polluants en milieu poreux: de la bactérie à l'échelle du terrain(2010), European Project: 645717,H2020,H2020-MSCA-RISE-2014,PROTINUS(2015), Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Advances in Water Resources
Advances in Water Resources, Elsevier, 2019, 125, pp.82-97. ⟨10.1016/j.advwatres.2019.01.011⟩
Advances in Water Resources, 2019, 125, pp.82-97. ⟨10.1016/j.advwatres.2019.01.011⟩
ISSN: 0309-1708
DOI: 10.1016/j.advwatres.2019.01.011⟩
Popis: International audience; In this paper, we introduce a pore-scale model to study the interaction between biofilm growth and non-aqueous-phase-liquid (NAPL) dissolution. Liquid flow and dissolved NAPL transport are coupled with a biofilm growth model to correctly describe the complex dynamics of the processes including fluid flow, NAPL dissolution/biodegradation and biofilm growth. Fluid flow is simulated using an immersed boundary-lattice Boltzmann (IB-LB) model; while solute transport is solved by a cut-cell finite volume method (FVM). A uniform dissolution approach is also adopted to capture the temporal evolution of trapped blobs. Spatio-temporal distributions of the biomass are investigated using a cellular automaton algorithm combined with the immersed boundary method (IBM). Simulations focused on NAPL dissolution in both abiotic and biotic conditions are conducted to assess the capability of the model. In abiotic conditions, we analyze the effects of the hydrodynamic regimes and the spatial distribution of NAPL blobs on the dissolution rate under different assumptions (i.e., blob size and Péclet number). In biotic conditions, a series of impact factors are also investigated (i.e., spatial distribution, reaction kinetics and NAPL-induced toxicity). Finally, the current model is used to evaluate the pore scale relevance of a local equilibrium assumption between fluid phase and biofilm phase in the vicinity of the NAPL source.
Databáze: OpenAIRE