A Numerical Method to Solve Higher-Order Fractional Differential Equations
Autor: | Ricardo Almeida, Nuno R. O. Bastos |
---|---|
Rok vydání: | 2015 |
Předmět: |
Fractional differential equations
Approximation formulas General Mathematics Numerical analysis 010102 general mathematics Mathematical analysis Fractional calculus Order (ring theory) Numerical Analysis (math.NA) 01 natural sciences Fractional operator 010101 applied mathematics FOS: Mathematics Numerical methods Mathematics - Numerical Analysis 0101 mathematics Fractional differential Mathematics |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-015-0550-2 |
Popis: | In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method. Comment: This is a preprint of a paper whose final and definite form will be published in Mediterr. J. Math |
Databáze: | OpenAIRE |
Externí odkaz: |