Phonon-Enhanced Mid-Infrared CO2 Gas Sensing Using Boron Nitride Nanoresonators
Autor: | Nestor Jr. Bareza, Bruno Paulillo, Tetiana M. Slipchenko, Marta Autore, Irene Dolado, Song Liu, James H. Edgar, Saül Vélez, Luis Martín-Moreno, Rainer Hillenbrand, Valerio Pruneri |
---|---|
Přispěvatelé: | UAM. Departamento de Física de la Materia Condensada, European Commission, European Research Council, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Fundació Privada Cellex, Fundación Privada Mir-Puig, Generalitat de Catalunya, Eusko Jaurlaritza, National Science Foundation (US), Office of Naval Research (US), Gobierno de Aragón |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Zaguán. Repositorio Digital de la Universidad de Zaragoza instname Digital.CSIC. Repositorio Institucional del CSIC |
Popis: | Hexagonal boron nitride (hBN) hosts long-lived phonon polaritons, yielding a strong mid-infrared (mid-IR) electric field enhancement and concentration on the nanometer scale. It is thus a promising material for highly sensitive mid-IR sensing and spectroscopy. In addition, hBN possesses high chemical and thermal stability as well as mechanical durability, making it suitable for operation in demanding environments. In this work, we demonstrate a mid-IR CO2 gas sensor exploiting phonon polariton (PhP) modes in hBN nanoresonators functionalized by a thin CO2-adsorbing polyethylenimine (PEI) layer. We find that the PhP resonance shifts to lower frequency, weakens, and broadens for increasing CO2 concentrations, which are related to the change of the permittivity of PEI upon CO2 adsorption. Moreover, the PhP resonance exhibits a high signal-to-noise ratio even for small ribbon arrays of 30 × 30 μm2. Our results show the potential of hBN nanoresonators to become a novel platform for miniaturized phonon-enhanced SEIRA gas sensors. The research leading to these results has received funding from the H2020 Programme under Grant Agreement No. 881603 (Graphene Flagship). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754510. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 665884. This work was partially funded by CEX2019-000910-S [MICINN/AEI/10.13039/501100011033] and Project TUNA-SURF (PID2019-106892RB-I00), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya through CERCA. We acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities (RTI2018-094830-B-100 and the Project MDM-2016-0618 of the Maria de Maeztu Units of Excellence Program) and the Basque Government (Grant Number IT1164-19). We acknowledge the Ministry of Science, Innovation and Universities through the ‘Maria de Maezt’ Programme for Units of Excellence in R&D (CEX2018-000805-M). Further, support from the Materials Engineering and Processing program of the National Science Foundation, Award Number CMMI 1538127 for h-BN crystal growth is greatly appreciated. The hBN crystals growth is also supported by an Office of Naval Research Award No. N00014-20-1-2474. I.D. acknowledges the Basque Government (Grant No. PRE_2019_2_0164). We acknowledge Project PID2020-115221GB-C41 financed by MCIN/AEI/10.13039/501100011033 and Aragon Government through Project Q-MAD. |
Databáze: | OpenAIRE |
Externí odkaz: |