Autor: |
Mengdie Cai, Siyu Cao, Zhenzhen Zhuo, Xue Wang, Kangzhong Shi, Qin Cheng, Zhaoming Xue, Xi Du, Cheng Shen, Xianchun Liu, Rui Wang, Lu Shi, Song Sun |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Catalysts; Volume 12; Issue 4; Pages: 417 |
ISSN: |
2073-4344 |
DOI: |
10.3390/catal12040417 |
Popis: |
Developing non-noble metal photocatalysts for efficient photocatalytic hydrogen evolution is crucial for exploiting renewable energy. In this study, a photocatalyst of Ni2P/CdS nanorods consisting of cadmium sulfide (CdS) nanorods (NRs) decorated with Ni2P nanoparticles (NPs) was fabricated using an in-situ solvothermal method with red phosphor (P) as the P source. Ni2P NPs were tightly anchored on the surface of CdS NRs to form a core-shell structure with a well-defined heterointerface, aiming to achieve a highly efficient photocatalytic H2 generation. The as-synthesized 2%Ni2P/CdS NRs photocatalyst exhibited the significantly improved photocatalytic H2 evolution rate of 260.2 μmol∙h−1, more than 20 folds higher than that of bare CdS NRs. Moreover, the as-synthesized 2%Ni2P/CdS NRs photocatalyst demonstrated an excellent stability, even better than that of Pt/CdS NRs. The photocatalytic performance enhancement was ascribed to the core-shell structure with the interfacial Schottky junction between Ni2P NPs and CdS NRs and the accompanying fast and effective photogenerated charge carriers’ separation and transfer. This work provides a new strategy for designing non-noble metal photocatalysts to replace the noble catalysts for photocatalytic water splitting. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|