A new formula for some linear stochastic equations with applications

Autor: Marc Yor, Offer Kella
Přispěvatelé: Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Annals of Applied Probability
Annals of Applied Probability, 2010, 20 (2), pp.367-381. ⟨10.1214/09-AAP637⟩
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2010, 20 (2), pp.367-381
Ann. Appl. Probab. 20, no. 2 (2010), 367-381
ISSN: 1050-5164
2168-8737
DOI: 10.1214/09-AAP637⟩
Popis: We give a representation of the solution for a stochastic linear equation of the form $X_t=Y_t+\int_{(0,t]}X_{s-} \mathrm {d}{Z}_s$ where $Z$ is a c\'adl\'ag semimartingale and $Y$ is a c\'adl\'ag adapted process with bounded variation on finite intervals. As an application we study the case where $Y$ and $-Z$ are nondecreasing, jointly have stationary increments and the jumps of $-Z$ are bounded by 1. Special cases of this process are shot-noise processes, growth collapse (additive increase, multiplicative decrease) processes and clearing processes. When $Y$ and $Z$ are, in addition, independent L\'evy processes, the resulting $X$ is called a generalized Ornstein-Uhlenbeck process.
Comment: Published in at http://dx.doi.org/10.1214/09-AAP637 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Databáze: OpenAIRE