Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings
Autor: | Ioannis Manolakis, Usaid Azhar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Biomimetic materials
Materials science animal structures mussel adhesive proteins Nanotechnology Context (language use) Mussel inspired Biofouling Materials Chemistry chemistry.chemical_classification biology fungi Surfaces and Interfaces Mussel Polymer catechol biology.organism_classification Mytilus Surfaces Coatings and Films adhesion Byssus chemistry marine antifouling lcsh:TA1-2040 bio-inspired synthetic polymers l-DOPA lcsh:Engineering (General). Civil engineering (General) |
Zdroj: | Coatings, Vol 10, Iss 653, p 653 (2020) |
ISSN: | 2079-6412 |
Popis: | Synthetic oligomers and polymers inspired by the multifunctional tethering system (byssus) of the common mussel (genus Mytilus) have emerged since the 1980s as a very active research domain within the wider bioinspired and biomimetic materials arena. The unique combination of strong underwater adhesion, robust mechanical properties and self-healing capacity has been linked to a large extent to the presence of the unusual α-amino acid derivative l-DOPA (l-3,4-dihydroxyphenylalanine) as a building block of the mussel byssus proteins. This paper provides a short overview of marine biofouling, discussing the different marine biofouling species and natural defenses against these, as well as biomimicry as a concept investigated in the marine antifouling context. A detailed discussion of the literature on the Mytilus mussel family follows, covering elements of their biology, biochemistry and the specific measures adopted by these mussels to utilise their l-DOPA-rich protein sequences (and specifically the ortho-bisphenol (catechol) moiety) in their benefit. A comprehensive account is then given of the key catechol chemistries (covalent and non-covalent/intermolecular) relevant to adhesion, cohesion and self-healing, as well as of some of the most characteristic mussel protein synthetic mimics reported over the past 30 years and the related polymer functionalisation strategies with l-DOPA/catechol. Lastly, we review some of the most recent advances in such mussel-inspired synthetic oligomers and polymers, claimed as specifically aimed or intended for use in marine antifouling coatings and/or tested against marine biofouling species. |
Databáze: | OpenAIRE |
Externí odkaz: |