Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis
Autor: | Tania Acuna, Aaron Fait, Simon Barak, Asif Khan, Isabel López-Díaz, Esther Carrera, Inna Khozin-Goldberg, Yana Kazachkova |
---|---|
Přispěvatelé: | Israel Science Foundation |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0106 biological sciences
0301 basic medicine dormancy Halophyte Salt stress seed germination Plant Science lcsh:Plant culture 01 natural sciences 03 medical and health sciences Arabidopsis Botany Radicle extremophile plants Dormancy lcsh:SB1-1110 Eutrema salsugineum Original Research salt stress biology Extremophile plant Seed dormancy Arabidopsis relative food and beverages biology.organism_classification Seed germination Salinity 030104 developmental biology Germination halophyte Brassicaceae Thellungiella 010606 plant biology & botany |
Zdroj: | RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia instname Frontiers in Plant Science Frontiers in Plant Science, Vol 7 (2016) Digital.CSIC. Repositorio Institucional del CSIC |
DOI: | 10.3389/fpls.2016.01071 |
Popis: | The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings. This work was supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant no. 152/11 to SB), The Pearlstein Foundation (to AF), and the Center for Absorption in Science, Israel Ministry of Immigrant Absorption Grant (to YK). |
Databáze: | OpenAIRE |
Externí odkaz: |