Multivariable evolution in final state parton shower algorithms

Autor: Zoltán Nagy, Davison E. Soper
Rok vydání: 2022
Předmět:
Zdroj: Physical Review
Physical review / D 105(5), 054012 (2022). doi:10.1103/PhysRevD.105.054012
ISSN: 2470-0029
2470-0010
DOI: 10.1103/physrevd.105.054012
Popis: Physical review / D 105(5), 054012 (2022). doi:10.1103/PhysRevD.105.054012
One can use more than one scale variable to specify the family of surfaces in the space of parton splitting parameters that define the evolution of a parton shower. Considering $e^+e^-$ annihilation, we use two variables, with shower evolution following a special path in this two dimensional space. In addition, we treat in a special way the part of the splitting function that has a soft emission singularity but no collinear singularity. This leads to certain advantages compared to the usual shower formulation with only one scale variable.
Published by Inst., Melville, NY
Databáze: OpenAIRE