f‐ block MOFs: A Pathway to Heterometallic Transuranics

Autor: Kyoung Chul Park, Preecha Kittikhunnatham, Jaewoong Lim, Grace C. Thaggard, Yuan Liu, Corey R. Martin, Gabrielle A. Leith, Donald J. Toler, An T. Ta, Nancy Birkner, Ingrid Lehman‐Andino, Alejandra Hernandez‐Jimenez, Gregory Morrison, Jake W. Amoroso, Hans‐Conrad zur Loye, Dave P. DiPrete, Mark D. Smith, Kyle S. Brinkman, Simon R. Phillpot, Natalia B. Shustova
Rok vydání: 2022
Předmět:
Zdroj: Angewandte Chemie International Edition. 62
ISSN: 1521-3773
1433-7851
DOI: 10.1002/anie.202216349
Popis: A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238U/239Pu-metal-organic frameworks (MOFs) and a novel monometallic 239Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97% of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Databáze: OpenAIRE