Tenable threats when Nash equilibrium is the norm
Autor: | Jozsef Sakovics, Françoise Forges |
---|---|
Přispěvatelé: | CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Economie de Dauphine (LEDa), Institut de Recherche pour le Développement (IRD)-Université Paris Dauphine-PSL |
Rok vydání: | 2022 |
Předmět: |
game theory
Statistics and Probability JEL: C - Mathematical and Quantitative Methods/C.C7 - Game Theory and Bargaining Theory/C.C7.C73 - Stochastic and Dynamic Games • Evolutionary Games • Repeated Games Economics and Econometrics JEL: D - Microeconomics/D.D0 - General/D.D0.D01 - Microeconomic Behavior: Underlying Principles [QFIN]Quantitative Finance [q-fin] C.C7.C72 JEL: D - Microeconomics/D.D8 - Information Knowledge and Uncertainty/D.D8.D83 - Search • Learning • Information and Knowledge • Communication • Belief • Unawareness JEL: D - Microeconomics/D.D9 - Intertemporal Choice/D.D9.D91 - Intertemporal Household Choice • Life Cycle Models and Saving microeconomics Nash Equilibrium Mathematics (miscellaneous) backward induction JEL: C - Mathematical and Quantitative Methods/C.C7 - Game Theory and Bargaining Theory/C.C7.C72 - Noncooperative Games games of perfect information sequential rationality threat Statistics Probability and Uncertainty credible threat equilibrium refinement Social Sciences (miscellaneous) |
Zdroj: | Forges, F & Sakovics, J 2022, ' Tenable threats when Nash Equilibrium is the norm ', International Journal of Game Theory, vol. 51, no. 3-4, pp. 589-605 . https://doi.org/10.1007/s00182-022-00806-3 |
ISSN: | 1432-1270 0020-7276 |
Popis: | We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the trimmed game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |