Performance Evaluation of Neural Networks for Animal Behaviors Classification: Horse Gaits Case Study

Autor: Daniel Gutierrez-Galan, Antonio Rios-Navarro, Juan Pedro Dominguez-Morales, Ricardo Tapiador-Morales, C. Martín-Cañal, Elena Cerezuela-Escudero, Alejandro Linares-Barranco
Přispěvatelé: Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores, Universidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitación
Rok vydání: 2016
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Distributed Computing and Artificial Intelligence, 13th International Conference ISBN: 9783319401614
DCAI
Popis: The study and monitoring of wildlife has always been a subject of great interest. Studying the behavior of wildlife animals is a very complex task due to the difficulties to track them and classify their behaviors through the collected sensory information. Novel technology allows designing low cost systems that facilitate these tasks. There are currently some commercial solutions to this problem; however, it is not possible to obtain a highly accurate classification due to the lack of gathered information. In this work, we propose an animal behavior recognition, classification and monitoring system based on a smart collar device provided with inertial sensors and a feed-forward neural network or Multi-Layer Perceptron (MLP) to classify the possible animal behavior based on the collected sensory information. Experimental results over horse gaits case study show that the recognition system achieves an accuracy of up to 95.6%. Junta de Andalucía P12-TIC-1300
Databáze: OpenAIRE