On the dual theory of a result of Bryce and Cossey
Autor: | Baojun Li, Nanying Yang, N. T. Vorob’ev |
---|---|
Rok vydání: | 2019 |
Předmět: |
Lockett formation
Class (set theory) Pure mathematics Fitting class Algebra and Number Theory Lockett class 010102 general mathematics Formation Function (mathematics) 01 natural sciences Dual (category theory) symbols.namesake Hartley function 0103 physical sciences ω-local Fitting class symbols 010307 mathematical physics 0101 mathematics Value (mathematics) Mathematics |
Zdroj: | Journal of Algebra. 522:124-133 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2018.12.009 |
Popis: | In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation F is a Fitting class if and only if every value of the canonical formation function F of F is a Fitting class. In this paper, we give the dual theory of the result of Bryce and Cossey. We proved that an ω-local (in particular, local) Fitting class F is a formation if and only if every value of the canonical ω-local (in particular, local) Hartley function F of F is a formation. |
Databáze: | OpenAIRE |
Externí odkaz: |