Quantitative estimates of convergence in nonlinear operator extensions of Korovkin's theorems
Autor: | Gal, Sorin G. Gal Sorin G., Niculescu, Constantin P. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
DOI: | 10.48550/arxiv.2302.04779 |
Popis: | This paper is aimed to prove a quantitative estimate (in terms of the modulus of continuity) for the convergence in the nonlinear version of Korovkin's theorem for sequences of weakly nonlinear and monotone operators defined on spaces of continuous real functions. Several examples illustrating the theory are included. Comment: 10 pages |
Databáze: | OpenAIRE |
Externí odkaz: |