Non-Lipschitz Uniform Domain Shape Optimization in Linear Acoustics

Autor: Michael Hinz, Anna Rozanova-Pierrat, Alexander Teplyaev
Přispěvatelé: Bielefeld University, Faculty of Mathematics, Bielefeld, Germany, Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, University of Connecticut (UCONN), CentraleSupélec-Université Paris-Saclay
Rok vydání: 2021
Předmět:
0209 industrial biotechnology
Pure mathematics
Control and Optimization
mixed boundary value problem
FOS: Physical sciences
02 engineering and technology
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
01 natural sciences
Domain (mathematical analysis)
Mosco convergence
Mathematics - Analysis of PDEs
020901 industrial engineering & automation
exten- sions
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Convergence (routing)
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Shape optimization
0101 mathematics
Mathematics - Optimization and Control
Mathematical Physics
Mathematics
convergence
Applied Mathematics
variational
010102 general mathematics
variational convergence
Mathematical Physics (math-ph)
traces
Lipschitz continuity
uniform domains
Functional Analysis (math.FA)
Mathematics - Functional Analysis
Optimization and Control (math.OC)
shape optimization
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
extensions
fractal boundaries
Analysis of PDEs (math.AP)
Zdroj: SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (2), pp.1007-1032. ⟨10.1137/20M1361687⟩
ISSN: 1095-7138
0363-0129
Popis: We introduce new parametrized classes of shape admissible domains in R^n , n $\ge$ 2, and prove that they are compact with respect to the convergence in the sense of characteristic functions, the Hausdorff sense, the sense of compacts and the weak convergence of their boundary volumes. The domains in these classes are bounded ($\epsilon$, $\infty$)-domains with possibly fractal boundaries that can have parts of any non-uniform Hausdorff dimension greater or equal to n -- 1 and less than n. We prove the existence of optimal shapes in such classes for maximum energy dissipation in the framework of linear acous-tics. A by-product of our proof is the result that the class of bounded ($\epsilon$, $\infty$)-domains with fixed $\epsilon$ is stable under Hausdorff convergence. An additional and related result is the Mosco convergence of Robin-type energy functionals on converging domains.
Databáze: OpenAIRE