Homotransfer FRET Reporters for Live Cell Imaging
Autor: | Vishnu P. Rao, Nicole E. Snell, Kendra M. Seckinger, Junyi Liang, Megan A. Rizzo, Allison E. Mancini, Jenna Leser |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
lcsh:Biotechnology Green Fluorescent Proteins Clinical Biochemistry Nanotechnology Review Biosensing Techniques anisotropy GFP biosensor 03 medical and health sciences Live cell imaging lcsh:TP248.13-248.65 Fluorescence Resonance Energy Transfer fluorescent protein Fluorescent protein Physics Polarization Microscopy General Medicine homotransfer Fluorescence 030104 developmental biology Förster resonance energy transfer Microscopy Fluorescence FRET Biosensor Fluorescence anisotropy |
Zdroj: | Biosensors, Vol 8, Iss 4, p 89 (2018) Biosensors |
ISSN: | 2079-6374 |
DOI: | 10.3390/bios8040089 |
Popis: | Förster resonance energy transfer (FRET) between fluorophores of the same species was recognized in the early to mid-1900s, well before modern heterotransfer applications. Recently, homotransfer FRET principles have re-emerged in biosensors that incorporate genetically encoded fluorescent proteins. Homotransfer offers distinct advantages over the standard heterotransfer FRET method, some of which are related to the use of fluorescence polarization microscopy to quantify FRET between two fluorophores of identical color. These include enhanced signal-to-noise, greater compatibility with other optical sensors and modulators, and new design strategies based upon the clustering or dimerization of singly-labeled sensors. Here, we discuss the theoretical basis for measuring homotransfer using polarization microscopy, procedures for data collection and processing, and we review the existing genetically-encoded homotransfer biosensors. |
Databáze: | OpenAIRE |
Externí odkaz: |