A note on uniqueness of entropy solutions to degenerate parabolic equations in $\mathbb{R}^N$

Autor: Mohamed Maliki, Boris Andreianov
Přispěvatelé: Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Equipe Modélisation, EDP et Analyse Numérique - FST Mohammédia, FST Mohammédia, DFG project 436 RUS 113/895/0-1
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Nonlinear Differential Equations and Applications
Nonlinear Differential Equations and Applications, Springer Verlag, 2010, 17 (1), pp. 109-118. ⟨10.1007/s00030-009-0042-9⟩
ISSN: 1021-9722
1420-9004
DOI: 10.1007/s00030-009-0042-9⟩
Popis: The original publication is available at www.springerlink.com DOI: 10.1007/s00030-009-0042-9; International audience; We study the Cauchy problem in $\mathbb{R}^N$ for the parabolic equation $u_t+\text{div} F(u)=\Delta \varphi(u)$, which can degenerate into a hyperbolic equation for some intervals of values of $u$. In the context of conservation laws (the case $\varphi\equiv 0$), it is known that an entropy solution can be non-unique when $F'$ has singularities. We show the uniqueness of an entropy solution to the general parabolic problem for all $L^\infty$ initial datum, under the isotropic condition on the flux $F$ known for conservation laws. The only assumption on the diffusion term is that $\varphi$ is a non-decreasing continuous function.
Databáze: OpenAIRE