Frequency-domain stability conditions for asynchronously sampled decentralized LTI systems

Autor: Nathan van de Wouw, Jijju Thomas, Christophe Fiter, Jean-Pierre Richard, Laurentiu Hetel
Přispěvatelé: Eindhoven University of Technology [Eindhoven] (TU/e), Finite-time control and estimation for distributed systems (VALSE), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), This work was supported by project UCoCoS, funded by the European Union’s EU Framework Programme for Research and Innovation, Horizon H2020, Grant Agreement N°: 675080., European Project: 675080,H2020,H2020-MSCA-ITN-2015,UCoCoS(2016), Group Van de Wouw, Dynamics and Control, Control Systems Technology, EIRES, ICMS Affiliated, EAISI Foundational
Rok vydání: 2021
Předmět:
Zdroj: Automatica
Automatica, In press, 129, ⟨10.1016/j.automatica.2021.109603⟩
Automatica, Elsevier, In press, 129, ⟨10.1016/j.automatica.2021.109603⟩
Automatica, 129:109603. Elsevier
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2021.109603
Popis: International audience; This paper deals with the exponential stability analysis of decentralized, sampled-data, Linear Time Invariant (LTI) control systems with asynchronous sensors and actuators. We consider the case where each controller in the decentralized setting has its own sampling and actuation frequency, which translates to asynchrony between sensors and actuators. Additionally, asynchrony may be induced by delays between the sampling instants and actuation update instants as relevant in a networked context. The decentralized, asynchronous LTI system is represented as the feedback interconnection of a continuous-time LTI system operator and an operator that captures the effects of asynchrony induced by sampling and delay. By characterizing the properties of the operators using small-gain type Integral Quadratic Constraints (IQC), we provide criteria for exponential stability of the asynchronous, decentralized LTI state-space models. The approach provided in this paper considers two scenarios, namely the 'large-delay' case and the 'small-delay' case where the delays are larger and smaller than the sampling interval, respectively. The effectiveness of the proposed results is corroborated by a numerical example.
Databáze: OpenAIRE