Tail estimates for stochastic fixed point equations via nonlinear renewal theory

Autor: Jeffrey F. Collamore, Anand N. Vidyashankar
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Collamore, J F & Vidyashankar, A N 2013, ' Tail estimates for stochastic fixed point equations via nonlinear renewal theory ', Stochastic Processes and Their Applications, vol. 123, no. 9, pp. 3378-3429 . https://doi.org/10.1016/j.spa.2013.04.015
DOI: 10.1016/j.spa.2013.04.015
Popis: This paper presents precise large deviation estimates for solutions to stochastic fixed point equations of the type V =_d f(V), where f(v) = Av + g(v) for a random function g(v) = o(v) a.s. as v tends to infinity. Specifically, we provide an explicit characterization of the pair (C,r) in the tail estimate P(V > u) ~ C u^-r as u tends to infinity, and also present a Lundberg-type upper bound of the form P(V > u)
56 pages. Minor corrections (March 14, 2011)
Databáze: OpenAIRE