Logarithmic corrections to O(a) and O($$a^2$$) effects in lattice QCD with Wilson or Ginsparg–Wilson quarks
Autor: | Nikolai Husung |
---|---|
Rok vydání: | 2023 |
Předmět: |
Physics and Astronomy (miscellaneous)
High Energy Physics::Lattice quenching FOS: Physical sciences 0 [higher-order] Lattice QCD mass: twist Scaling nonlinear [sigma model] anomalous dimension quark High Energy Physics - Lattice twist [mass] quantum chromodynamics ddc:530 Engineering (miscellaneous) higher-order: 0 High Energy Physics - Lattice (hep-lat) lattice field theory O(3) Ginsparg-Wilson relation pile-up sigma model: nonlinear spectral Effective theory |
Zdroj: | The European physical journal / C 83(2), 142 (2023). doi:10.1140/epjc/s10052-023-11258-8 |
ISSN: | 1434-6052 |
DOI: | 10.1140/epjc/s10052-023-11258-8 |
Popis: | The European physical journal / C 83(2), 142 (2023). doi:10.1140/epjc/s10052-023-11258-8 We derive the asymptotic lattice spacing dependence $a^n[2b_0\bar{g}^2(1/a)]^{\hat{\Gamma }_i}$ relevant for spectral quantities of lattice QCD, when using Wilson, $\textrm{O}(a)$ improved Wilson or Ginsparg–Wilson quarks. We give some examples for the spectra encountered for $\hat{\Gamma }_i$ including the partially quenched case, mixed actions and using two different discretisations for dynamical quarks. This also includes maximally twisted mass QCD relying on automatic $\textrm{O}(a)$ improvement. At $\textrm{O}(a^2)$, all cases considered have $\min _i\hat{\Gamma }_i > rsim -0.3$ if $N_{\textrm{f}}\le 4$, which ensures that the leading order lattice artifacts are not severely logarithmically enhanced in contrast to the O(3) non-linear sigma model (Balog et al. in Nucl Phys B 824:563–615, 2010; Balog et al. in Phys Lett B 676:188–192, 2009). However, we find a very dense spectrum of these leading powers, which may result in major pile-ups and cancellations. We present in detail the computational strategy employed to obtain the 1-loop anomalous dimensions already used in Husung et al. (Phys Lett B 829:137069, 2022). Published by Springer, Heidelberg |
Databáze: | OpenAIRE |
Externí odkaz: |