Tissue Oxidative Ecology along an Aridity Gradient in a Mammalian Subterranean Species

Autor: Jacobs, Paul J., Hart, Daniel W., Merchant, Hana N., van Vuuren, Andries K. Janse K., Faulkes, Chris G., Portugal, Steven J., Van Jaarsveld, Barry, Bennett, Nigel C., Hydrologie
Přispěvatelé: Hydrologie
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Antioxidants; Volume 11; Issue 11; Pages: 2290
Antioxidants, 11(11), 1. MDPI Multidisciplinary Digital Publishing Institute
ISSN: 2076-3921
DOI: 10.3390/antiox11112290
Popis: Climate change has caused aridification which can alter habitat vegetation, soil and precipitation profiles potentially affecting resident species. Vegetation and soil profiles are important for subterranean mole-rats as increasing aridity causes soils to become harder and geophytes less evenly distributed, and the inter-geophyte distance increases. Mole-rats obtain all water and dietary requirements from geophytes, and thus digging in harder soils may amplify stressors (hyperthermia, dehydration- or exercise-induced damage). This study assessed the oxidative status of the wild common mole-rat along an aridity gradient (arid, semi-arid and mesic). Kidney and liver oxidative markers, including total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Liver oxidative status did not demonstrate any significance with the degree of the aridity gradient. Aridity affected the TAC and OSI of the kidney, with individuals in the most arid habitats possessing the highest TAC. The evolution of increased group size to promote survival in African mole-rats in arid habitats may have resulted in the additional benefit of reduced oxidative stress in the kidneys. The SOD activity of the kidneys was higher than that of the liver with lower oxidative damage, suggesting this species pre-emptively protects its kidneys as these are important for water balance and retention.
Databáze: OpenAIRE