Linear Point and Sound Horizon as Purely Geometric standard rulers

Autor: Glenn D. Starkman, Stefano Anselmi, Ravi K. Sheth, Márcio O'Dwyer, Pier Stefano Corasaniti, Idit Zehavi
Přispěvatelé: Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
cosmological model
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
geometry
satellite: Planck
Cosmic microwave background
Cosmic background radiation
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
Astrophysics::Cosmology and Extragalactic Astrophysics
cosmic background radiation
power spectrum
baryon: oscillation: acoustic
01 natural sciences
Cosmology
General Relativity and Quantum Cosmology
Monte Carlo: Markov chain
horizon
symbols.namesake
High Energy Physics - Phenomenology (hep-ph)
statistical analysis
0103 physical sciences
numerical methods
Statistical physics
correlation function
Planck
010306 general physics
numerical calculations
Physics
COSMIC cancer database
perturbation: primordial
010308 nuclear & particles physics
Standard ruler
Observable
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
symbols
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Baryon acoustic oscillations
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Astrophysics - Cosmology and Nongalactic Astrophysics
Zdroj: Phys.Rev.D
Phys.Rev.D, 2020, 101 (8), pp.083517. ⟨10.1103/PhysRevD.101.083517⟩
DOI: 10.1103/PhysRevD.101.083517⟩
Popis: The Baryon Acoustic Oscillations feature (BAO) imprinted in the clustering correlation function is known to furnish us cosmic distance determinations that are independent of the cosmological-background model and the primordial perturbation parameters. These measurements can be accomplished rigorously by means of the Purely Geometric BAO methods. To date two different Purely Geometric BAO approaches have been proposed. The first exploits the linear-point standard ruler. The second, called correlation-function model-fitting, exploits the sound-horizon standard ruler. A key difference between them is that, when estimated from clustering data, the linear point makes use of a cosmological-model-independent procedure to extract the ratio of the ruler to the cosmic distance, while the correlation-function model-fitting relies on a phenomenological cosmological model for the correlation function. Nevertheless the two rulers need to be precisely defined independently of any specific observable. We define the linear point and sound horizon and we characterize and compare the two rulers' cosmological-parameter dependence. We find that they are both geometrical within the required accuracy, and they have the same parameter dependence for a wide range of parameter values. We estimate the rulers' best-fit values and errors given the cosmological constraints obtained by the Planck Satellite team from the CMB measurements. We do this for three different cosmological models encompassed by the Purely Geometric BAO methods. In each case we find that the relative errors of the two rulers coincide and they are insensitive to the assumed cosmological model. Interestingly both the linear point and the sound horizon shift by $0.5\sigma$ when we do not fix the spatial geometry to be flat in LCDM. This points toward a sensitivity of the rulers to different cosmological models when they are estimated from the CMB.
Comment: 13 pages, 7 figures
Databáze: OpenAIRE