Quotients and subgroups of Baumslag–Solitar groups
Autor: | Gilbert Levitt |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU) |
Rok vydání: | 2014 |
Předmět: |
Combinatorics
Mathematics::Group Theory Algebra and Number Theory Mathematics::Operator Algebras Group (mathematics) Finitely-generated abelian group Tree (set theory) Mathematics::Geometric Topology ComputingMilieux_MISCELLANEOUS [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Quotient Mathematics |
Zdroj: | Journal of Group Theory Journal of Group Theory, De Gruyter, 2015, 18 (1), pp.1-43. ⟨10.1515/jgth-2014-0028⟩ |
ISSN: | 1435-4446 1433-5883 |
DOI: | 10.1515/jgth-2014-0028 |
Popis: | We determine all generalized Baumslag–Solitar groups (finitely generated groups acting on a tree with all stabilizers infinite cyclic) which are quotients of a given Baumslag–Solitar group BS(m,n), and (when BS(m,n) is not Hopfian) which of them also admit BS(m,n) as a quotient. We determine for which values of r, s one may embed BS(r,s) into a given BS(m,n), and we characterize finitely generated groups which embed into some BS(n,n). |
Databáze: | OpenAIRE |
Externí odkaz: |