Three-dimensional hybrid asynchronous perfectly matched layer for wave propagation in heterogeneous semi-infinite media

Autor: Michael Brun, Irini Djeran-Maigre, Sergey V. Kuznetsov, Sijia Li
Přispěvatelé: Géomécanique, Matériaux et Structures (GEOMAS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon, Conservatoire National des Arts et Métiers [CNAM] (CNAM), Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), institute for Problems in Mechanics [Moscow], Russian Academy of Sciences [Moscow] (RAS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Comptes Rendus Mécanique
Comptes Rendus Mécanique, Elsevier, 2020, 348 (12), pp.1003-1030. ⟨10.5802/crmeca.59⟩
DOI: 10.5802/crmeca.59⟩
Popis: International audience; This paper presents an efficient hybrid asynchronous three-dimensional (3D) perfectly matched layer (PML) for modeling unbounded domains. The proposed unsplit explicit or implicit 3D PML formulation is implemented in the framework of a heterogeneous asynchronous time integrator. It is fully versatile in terms of time integrators and time step sizes according to partitions while conserving classical finite element formulations in the elastic domain without complex-valued stretched coordinates. Examples of a semi-infinite bar, Lamb’s test, and a soil–structure interaction problem with PML-truncated semi-infinite heterogeneous media are investigated to illustrate the efficiency of the proposed PML in terms of accuracy and CPU time.
Databáze: OpenAIRE