Substrate Induced Movement of the Metal Cofactor between Active and Resting State
Autor: | Stefan R. Marsden, Hein J. Wijma, Michael K. F. Mohr, Inês Justo, Peter‐Leon Hagedoorn, Jesper Laustsen, Cy M. Jeffries, Dmitri Svergun, Luuk Mestrom, Duncan G. G. McMillan, Isabel Bento, Ulf Hanefeld |
---|---|
Přispěvatelé: | Groningen Biomolecular Sciences and Biotechnology, Biotechnology |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Angewandte Chemie / International edition 61(49), e202213338 (2022). doi:10.1002/anie.202213338 Angewandte Chemie (International Edition), 61(49) Angewandte Chemie-International Edition, 61(49):e202213338. WILEY-V C H VERLAG GMBH |
ISSN: | 1521-3773 1433-7851 |
DOI: | 10.1002/anie.202213338 |
Popis: | Angewandte Chemie / International edition 61(49), e202213338 (2022). doi:10.1002/anie.202213338 Regulation of enzyme activity is vital for living organisms. In metalloenzymes, far-reaching rearrangements of the protein scaffold are generally required to tune the metal cofactor's properties by allosteric regulation. Here structural analysis of hydroxyketoacid aldolase from Sphingomonas wittichii RW1 (SwHKA) revealed a dynamic movement of the metal cofactor between two coordination spheres without protein scaffold rearrangements. In its resting state configuration (M$^{2+}$$_R$), the metal constitutes an integral part of the dimer interface within the overall hexameric assembly, but sterical constraints do not allow for substrate binding. Conversely, a second coordination sphere constitutes the catalytically active state (M$^{2+}$$_A$) at 2.4 Å distance. Bidentate coordination of a ketoacid substrate to M$^{2+}$$_A$ affords the overall lowest energy complex, which drives the transition from M$^{2+}$$_R$ to M$^{2+}$$_A$. While not described earlier, this type of regulation may be widespread and largely overlooked due to low occupancy of some of its states in protein crystal structures. Published by Wiley-VCH, Weinheim |
Databáze: | OpenAIRE |
Externí odkaz: |