Generalized derivations on Jordan ideals in prime rings

Autor: Mahmmoud El-Soufi, Ahmed Aboubakr
Rok vydání: 2014
Předmět:
Zdroj: Volume: 38, Issue: 2 233-239
Turkish Journal of Mathematics
ISSN: 1303-6149
1300-0098
DOI: 10.3906/mat-1211-42
Popis: Let R be a 2-torsion free prime ring with center Z(R), J be a nonzero Jordan ideal also a subring of R, and F be a generalized derivation with associated derivation d. In the present paper, we shall show that JZ(R) if any one of the following properties holds: (i) (F(u);u) 2 Z(R), (ii) F(u)u = ud(u), (iii) d(u 2 ) = 2F(u)u, (iv) F(u 2 ) 2uF(u) = d(u 2 ) 2ud(u), (v) F 2 (u) + 3d 2 (u) = 2Fd(u) + 2dF(u), (vi) F(u 2 ) = 2uF(u) for all u 2 J.
Databáze: OpenAIRE