Level-set modelling of Laser Beam Melting process applied onto ceramic materials – Comparison with experimental results

Autor: L. Moniz da Silva Sancho, Marie-Hélène Berger, Christophe Colin, Charles-André Gandin, Michel Bellet, Jean-Dominique Bartout, Gildas Guillemot, Qiang Chen
Přispěvatelé: Biomechanics Laboratory, Division of Orthopedic Research, University of Rochester [USA], Edifices PolyMétalliques (E-POM), Institut Parisien de Chimie Moléculaire (IPCM), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: IOP Conference Series: Materials Science and Engineering
IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, 529, pp.012002. ⟨10.1088/1757-899X/529/1/012002⟩
ISSN: 1757-8981
1757-899X
DOI: 10.1088/1757-899X/529/1/012002⟩
Popis: Laser Beam Melting (LBM) processes benefit from significant progress in recent years. Currently, manufacturing of ceramic parts for applications at high temperature in aeronautical industries can be planned. However, understanding of defect formation is required in order to optimize manufacturing strategy. In this work, level-set modelling is proposed to simulate tracks development during LBM processes. Thermo-mechanical solution is performed in both powder and dense domains. Fluid flow is computed considering the surface tension and Marangoni forces. In addition mechanical resolution is achieved to investigate stress evolution in the rear part of the track. Applications are developed on alumina material. The influence of laser power, scanning velocity and physical properties are investigated and discussed. Validations of the heat source model are proposed by comparisons of melt pool dimensions and shapes with experimental measurements. A coherent evolution of the track morphology is shown when varying process parameters or material properties.
Databáze: OpenAIRE