Striatal bilateral control of skilled forelimb movement
Autor: | Violeta G. Lopez-Huerta, Gordon W. Arbuthnott, Omar Jáidar, Yoko Nakano, Jai A. Denton, Marianela Garcia-Munoz |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Movement Striatum Biology Optogenetics Medium spiny neuron Indirect pathway of movement General Biochemistry Genetics and Molecular Biology Corpus Striatum 03 medical and health sciences Electrophysiology Mice 030104 developmental biology 0302 clinical medicine medicine.anatomical_structure Forelimb medicine Animals Direct pathway of movement Motor learning Neuroscience 030217 neurology & neurosurgery |
Zdroj: | Cell reports. 34(3) |
ISSN: | 2211-1247 |
Popis: | Summary Skilled motor behavior requires bihemispheric coordination, and participation of striatal outputs originating from two neuronal groups identified by distinctive expression of D1 or D2 dopamine receptors. We trained mice to reach for and grasp a single food pellet and determined how the output pathways differently affected forelimb trajectory and task efficiency. We found that inhibition and excitation of D1-expressing spiny projection neurons (D1SPNs) have a similar effect on kinematics results, as if excitation and inhibition disrupt the whole ensemble dynamics and not exclusively one kind of output. In contrast, D2SPNs participate in control of target accuracy. Further, ex vivo electrophysiological comparison of naive mice and mice exposed to the task showed stronger striatal neuronal connectivity for ipsilateral D1 and contralateral D2 neurons in relation to the paw used. In summary, while the output pathways work together to smoothly execute skill movements, practice of the movement itself changes synaptic patterns. |
Databáze: | OpenAIRE |
Externí odkaz: |