KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis

Autor: Giuseppe D’Aniello, Matteo Gaeta, Ilaria La Rocca
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: The analysis of the opinions of customers and users has been always of great interest in supporting decision-making in many fields, especially in marketing. Sentiment analysis (SA) is the umbrella term for techniques and approaches that analyze user’s sentiments, emotions, opinions in text or other media. The need for a better understanding of these opinions paved the way to novel approaches that focus on the analysis of the sentiment related to specific features of a product, giving birth to the field of aspect-based sentiment analysis (ABSA). Although the increasing interest in this discipline, there is still confusion regarding the basic concepts of ABSA: terms like sentiment, affect, emotion, opinion, are used as synonyms while they represent different concepts. This often leads to an incorrect analysis of the users’ opinions.This work presents an overview of the state-of-the-art techniques and approaches for ABSA, highlighting the main critical issues related to current trends in this field. Following this analysis, a new reference model for SA and ABSA, namely the KnowMIS-ABSA model, is proposed. The model is grounded on the consideration that sentiment, affect, emotion and opinion are very different concepts and that it is profoundly wrong to use the same metric and the same technique to measure them. Accordingly, we argue that different tools and metrics should be adopted to measure each of the dimensions of an opinion. A qualitative case study, regarding product reviews, is proposed to motivate the advantages of the KnowMIS-ABSA model.
Databáze: OpenAIRE