On a family of hypergeometric Sobolev orthogonal polynomials on the unit circle

Autor: Sergey M. Zagorodnyuk
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Volume: 3, Issue: 2 75-84
Constructive Mathematical Analysis
ISSN: 2651-2939
Popis: In this paper we study the following family of hypergeometric polynomials: $y_n(x) = \frac{ (-1)^\rho }{ n! } x^n {}_2 F_0(-n,\rho;-;-\frac{1}{x})$, depending on a parameter $\rho\in\mathbb{N}$. Differential equations of orders $\rho+1$ and $2$ for these polynomials are given. A recurrence relation for $y_n$ is derived as well. Polynomials $y_n$ are Sobolev orthogonal polynomials on the unit circle with an explicit matrix measure.
Comment: 11 pages
Databáze: OpenAIRE