Parity sheaves and Smith theory

Autor: Spencer Leslie, Gus Lonergan
Rok vydání: 2021
Předmět:
Zdroj: Journal für die reine und angewandte Mathematik (Crelles Journal). 2021:49-87
ISSN: 1435-5345
0075-4102
Popis: Let $p$ be a prime number and let $X$ be a complex algebraic variety with an action of $\mathbb{Z}/p\mathbb{Z}$. We develop the theory of parity complexes in a certain $2$-periodic localization of the equivariant constructible derived category $D^b_{\mathbb{Z}/p\mathbb{Z}}(X,\mathbb{Z}_p)$. Under certain assumptions, we use this to define a functor from the category of parity sheaves on $X$ to the category of parity sheaves on the fixed-point locus $X^{\mathbb{Z}/p\mathbb{Z}}$. This may be thought of as a categorification of Smith theory. When $X$ is the affine Grassmannian associated to some complex reductive group, our functor gives a geometric construction of the Frobenius-contraction functor recently defined by M. Gros and M. Kaneda via the geometric Satake equivalence.
Comment: 34 pages;v3: substantial edits throughout, improved exposition and introduction, main application to the Frobenius-contraction functor strengthened; v4: accepted version, to appear in Journal f\"{u}r die Reine und Angewandte Mathematik
Databáze: OpenAIRE