Minimal realizations of nonlinear systems
Autor: | Ülle Kotta, Claude H. Moog, Maris Tõnso |
---|---|
Přispěvatelé: | Institute of Cybernetics [Tallinn], Tallinn Technical University, Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0209 industrial biotechnology
Reduction (recursion theory) Computer science Minimal realization Dimension (graph theory) Observable 02 engineering and technology State (functional analysis) Time-varying systems Accessibility Nonlinear system 020901 industrial engineering & automation Cover (topology) Control and Systems Engineering [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering 0202 electrical engineering electronic engineering information engineering Nonlinear systems Applied mathematics 020201 artificial intelligence & image processing Electrical and Electronic Engineering State space realization Realization (systems) Polynomial methods Reduction |
Zdroj: | Automatica Automatica, Elsevier, 2018, 95, pp.207-212. ⟨10.1016/j.automatica.2018.05.007⟩ |
ISSN: | 0005-1098 |
DOI: | 10.1016/j.automatica.2018.05.007⟩ |
Popis: | International audience; The nonlinear realization theory is recasted for time-varying single-input single-output nonlinear systems. The concept of realization has been extended to cover also the realizations with order greater than the order of input–output equation. The minimal realization problem is studied. The state realization is said to be minimal if it is either accessible and observable or its state dimension is minimal. In the linear case the two definitions are equivalent, but not for nonlinear time-invariant systems. It is shown that the two definitions remain equivalent for nonlinear systems under certain technical assumptions. Two alternative methods are presented for finding the minimal realization. |
Databáze: | OpenAIRE |
Externí odkaz: |