A Linear-Complexity Rule Base Generation Method for Fuzzy Systems

Autor: Liviu-Cristian Dutu, Gilles Mauris, Philippe Bolon
Přispěvatelé: Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: IFSA-EUSFLAT 2015-16th World Congress of the International Fuzzy Systems Association (IFSA)-9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)
IFSA-EUSFLAT 2015-16th World Congress of the International Fuzzy Systems Association (IFSA)-9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), Jul 2015, Gijon, Spain. pp. 520-527, ⟨10.2991/ifsa-eusflat-15.2015.75⟩
IFSA-EUSFLAT
DOI: 10.2991/ifsa-eusflat-15.2015.75⟩
Popis: International audience; Rule base generation from numerical data has been a dynamic research topic within the fuzzy community in the last decades, and several well-established methods have been proposed. While some authors presented simple, empirical approaches, but which generally show high error rates, others turned to complex heuristic techniques to improve accuracy. In this paper, an extension of the classical Wang-Mendel method is proposed. While keeping a linear complexity, the new method achieves performances close to those of more complex methods based on cooperative rules (COR). Results on synthetic data show the potential of the proposed method as a complexity-accuracy trade-off.
Databáze: OpenAIRE