Popis: |
Для синтезу нанопорошку rGO@SnO2 використовується техніка хімічного співосадження. Серед різноманітних оксидів металів SnO2 є напівпровідником n-типу з широкою забороненою зоною 3,64 еВ при кімнатній температурі, який широко використовується в різних додатках, таких як датчики, прозорі провідні електроди, оптоелектронні пристрої, фотокаталізатори, літій-іонні батареї та сонячні елементи. При аналізі спектрів рентгенівської дифракції (XRD) розмір кристалітів наночастинок становить 2,15 нм. Інфрачервона спектроскопія з перетворенням Фур'є (FTIR) показує розтяжні та коливальні режими зв'язку метал-кисень при 662 см – 1, підтверджує наявність антисиметричного містка O–Sn–O і появу піків при 1387 см – 1 та 1635 см – 1 за рахунок зв'язків C–H та C=C відповідно. Зображення автоелектронної скануючої мікроскопії (FESEM) показує, що розмір нанокристалітів менше 10 нм. Оптична ширина забороненої зони (OBG) нанопорошку rGO@SnO2, розрахована за допомогою аналізу графіка Тауца, становить 3,53 еВ, що менше, ніж OBG чистого SnO2. Провідність та питомий опір нанопорошку rGO@SnO2 розраховано за вольт-амперними характеристиками. The chemical co-precipitation technique is used to synthesize rGO@SnO2 nanopowder. Among a variety of metal oxides, SnO2 is an n-type semiconductor with a broad band gap of 3.64 eV at room temperature, which is widely used in different applications such as sensors, transparent conducting electrodes, optoelectronic devices, photocatalysts, lithium-ion batteries, and solar cells. When analyzing the X-ray diffraction (XRD) spectra, the crystallite size of nanoparticles is 2.15 nm. Fourier transform infrared spectroscopy (FTIR) shows the stretching and vibrational modes of the metal-oxygen bond at 662 cm – 1, confirms the presence of antisymmetric O–Sn–O bridge and the appearance of peaks at 1387 cm – 1 and 1635 cm – 1 due to C–H and C=C bonds, respectively. Field emission scanning electron microscopy (FESEM) image shows that the size of nanocrystallites is less than 10 nm. The optical band gap (OBG) of rGO@SnO2 nanopowder is calculated using Tauc plot analysis and is 3.53 eV, which is less than OBG of pure SnO2. Conductivity and resistivity of rGO@SnO2 nanopowder are calculated from the I-V characteristics. |