Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion
Autor: | Olivier Thouvenin, Claire Wyart, Andrew Prendergast, Hugues Pascal-Moussellard, Steven Knafo, Sophie Nunes Figueiredo, Charles William Dickey, Alexandre Parrin, Kevin Fidelin, Po-En Brian Tseng, Urs Lucas Böhm |
---|---|
Přispěvatelé: | Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
sensory feedback Sensory Receptor Cells QH301-705.5 [SDV]Life Sciences [q-bio] Science Optogenetics General Biochemistry Genetics and Molecular Biology 03 medical and health sciences Spinal circuits Genetic model Neural Pathways medicine Zebrafish larvae Animals genetic targeting Biology (General) optogenetics Zebrafish General Immunology and Microbiology biology General Neuroscience fungi spinal cord mechanoception General Medicine Anatomy biology.organism_classification Spinal cord locomotion 030104 developmental biology medicine.anatomical_structure Reflex Medicine Neuroscience Mechanoreceptors Research Article |
Zdroj: | eLife, Vol 6 (2017) eLife eLife, eLife Sciences Publication, 2017, 2017 (6), pp.e25260. ⟨10.7554/eLife.25260⟩ |
ISSN: | 2050-084X |
Popis: | Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion—the zebrafish larva. We show that mechanosensory feedback enhances the recruitment of motor pools during active locomotion. Furthermore, we demonstrate that inputs from mechanosensory neurons increase locomotor speed by prolonging fast swimming at the expense of slow swimming during stereotyped acoustic escape responses. This effect could be mediated by distinct mechanosensory neurons. In the spinal cord, we show that connections compatible with monosynaptic inputs from mechanosensory Rohon-Beard neurons onto ipsilateral V2a interneurons selectively recruited at high speed can contribute to the observed enhancement of speed. Altogether, our study reveals the basic principles and a circuit diagram enabling speed modulation by mechanosensory feedback in the vertebrate spinal cord. DOI: http://dx.doi.org/10.7554/eLife.25260.001 |
Databáze: | OpenAIRE |
Externí odkaz: |