Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion

Autor: Olivier Thouvenin, Claire Wyart, Andrew Prendergast, Hugues Pascal-Moussellard, Steven Knafo, Sophie Nunes Figueiredo, Charles William Dickey, Alexandre Parrin, Kevin Fidelin, Po-En Brian Tseng, Urs Lucas Böhm
Přispěvatelé: Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: eLife, Vol 6 (2017)
eLife
eLife, eLife Sciences Publication, 2017, 2017 (6), pp.e25260. ⟨10.7554/eLife.25260⟩
ISSN: 2050-084X
Popis: Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion—the zebrafish larva. We show that mechanosensory feedback enhances the recruitment of motor pools during active locomotion. Furthermore, we demonstrate that inputs from mechanosensory neurons increase locomotor speed by prolonging fast swimming at the expense of slow swimming during stereotyped acoustic escape responses. This effect could be mediated by distinct mechanosensory neurons. In the spinal cord, we show that connections compatible with monosynaptic inputs from mechanosensory Rohon-Beard neurons onto ipsilateral V2a interneurons selectively recruited at high speed can contribute to the observed enhancement of speed. Altogether, our study reveals the basic principles and a circuit diagram enabling speed modulation by mechanosensory feedback in the vertebrate spinal cord. DOI: http://dx.doi.org/10.7554/eLife.25260.001
Databáze: OpenAIRE