Linear Induction Motors in Transportation Systems
Autor: | Konrad Woronowicz, Ryszard Palka |
---|---|
Rok vydání: | 2021 |
Předmět: |
Technology
Control and Optimization Adaptive control Computer science medicine.medical_treatment Energy Engineering and Power Technology finite element analysis 02 engineering and technology Propulsion 01 natural sciences Rotary engine Software linear induction motors Control theory 0103 physical sciences 0202 electrical engineering electronic engineering information engineering medicine Electrical and Electronic Engineering Engineering (miscellaneous) 010302 applied physics Renewable Energy Sustainability and the Environment business.industry 020208 electrical & electronic engineering Traction (orthopedics) Finite element method Linear induction motor business end effect Energy (miscellaneous) Voltage |
Zdroj: | Energies, Vol 14, Iss 2549, p 2549 (2021) |
ISSN: | 1996-1073 |
DOI: | 10.3390/en14092549 |
Popis: | This paper provides an overview of the Linear Transportation System (LTS) and focuses on the application of a Linear Induction Motor (LIM) as a major constituent of LTS propulsion. Due to their physical characteristics, linear induction motors introduce many physical phenomena and design constraints that do not occur in the application of the rotary motor equivalent. The efficiency of the LIM is lower than that of the equivalent rotary machine, but, when the motors are compared as integrated constituents of the broader transportation system, the rotary motor’s efficiency advantage diminishes entirely. Against this background, several solutions to the problems still existing in the application of traction linear induction motors are presented based on the scientific research of the authors. Thus, solutions to the following problems are presented here: (a) development of new analytical solutions and finite element methods for LIM evaluation; (b) comparison between the analytical and numerical results, performed with commercial and self-developed software, showing an exceptionally good agreement; (c) self-developed LIM adaptive control methods; (d) LIM performance under voltage supply (non-symmetrical phase current values); (e) method for the power loss evaluation in the LIM reaction rail and the temperature rise prediction method of a traction LIM; and (f) discussion of the performance of the superconducting LIM. The addressed research topics have been chosen for their practical impact on the advancement of a LIM as the preferred urban transport propulsion motor. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |