Understanding the limitations of Sentinel-3 inland altimetry through validation over the Rhine River

Autor: Schneider, Nicholas M.
Jazyk: angličtina
Rok vydání: 2023
DOI: 10.18419/opus-12765
Popis: Satellite altimetry is developing into one of the most powerful measurement techniques for long-term water body monitoring thanks to its high spatial resolution and its increasing level of precision. Although the principle of satellite altimetry is very straightforward, the retrieval of correct water levels remains rather difficult due to various factors. Waveform retracking is an approach to optimize the initially determined range between the satellite and the water body on Earth by exploiting the information within the power-signal of the returned radar pulse to the altimeter. Several so-called retrackers have been designed to this end, yet remain one of the most open study areas in satellite altimetry due to their crucial role they play in water level retrieval. Moreover, geophysical properties of the stratified atmosphere and the target on Earth have an effect on the travel time of the transmitted radar pulse and can amount to severalmeters in range. In this study we provide an overall analysis of the performances of the retrackers dedicated to the Sentinel-3 mission and the applied geophysical corrections. For this matter, we focus on nine different locations within the Rhine River basin where locally gauged data is available to validate the Sentinel-3 level-2 products. Furthermore, we present a reverse retracking approach in the sense that we use the given in-situ data to determine the offset to each altimetry-derived measurement of every epoch. Under the assumption that these offsets are legitimate, they can be seen as an a-posteriori correction which we project onto the range and thus on a waveform level. Further analyses consist in the investigation of the relationship these a-posteriori corrections have to the waveform properties of the same epoch. Later, the question whether the a-posteriori corrections to the initial retracking gates are appropriate for the retrieval of correct water levels, drives us to assign a probability to each and every bin of the waveform. Following this idea, we design stochastic-based retrackers which determine the retracking gate for water level retrieval from the bin with the highest probability assigned to it. To distribute the probabilities across all bins of the waveform, we consider three empirical approaches that take both the waveform itself and its first derivative into account: Addition, multiplication and maximum of both signals. For all three of the new retrackers, we generate the water level timeseries over the aforementioned sites and validate them against in-situ data and the retrackers dedicated to the Sentinel-3 mission.
Databáze: OpenAIRE