Dirac quasinormal modes for a -dimensional Lifshitz black hole
Autor: | Catalán, MarcelaDepartamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla 54-D, Temuco, Chile, Cisternas, Eduardo(Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla 54-D, Temuco, Chile), González, P. A.(Facultad de Ingeniería, Universidad Diego Portales, Avenida Ejército Libertador 441, Casilla 298-V, Santiago, Chile), Vásquez, Yerko(Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Avenida Cisternas 1200, La Serena, Chile) |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | European Physical Journal C |
Popis: | We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method. Version accepted for publication in EPJC. arXiv admin note: text overlap with arXiv:1306.5974 |
Databáze: | OpenAIRE |
Externí odkaz: |