Bio-inspired non self-similar hierarchical elastic metamaterials

Autor: M. Mazzotti, A. Foehr, O.R. Bilal, A. Bergamini, F. Bosia, C. Daraio, N.M. Pugno, M. Miniaci
Přispěvatelé: University of Colorado [Boulder], California Institute of Technology (CALTECH), University of Connecticut (UCONN), Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Politecnico di Torino = Polytechnic of Turin (Polito), Department of Applied Science and Technology [Politecnico di Torino] (DISAT), University of Trento [Trento], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Acoustique - IEMN (ACOUSTIQUE - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), M. Miniaci is supported by the EU H2020 ERC StG «POSEIDON», Grant Agreement No. 101039576.A. Bergamini, F. Bosia, N.M. Pugno, M. Miniaci are supported by the EU H2020 FET Open «BOHEME», Grant Agreement No. 863179.C. Daraio acknowledges financial support from the Department of Energy under grant DE-SC0021253., European Project: 101039576,Horizon Europe,ERC-2021-STG,POSEIDON(2022), European Project: 863179,H2020,H2020-FETOPEN-2018-2019-2020-01,BOHEME(2020), California Institute of Technology [CALTECH], University of Connecticut [UCONN], Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] [EMPA], Politecnico di Torino = Polytechnic of Turin [Polito], Department of Applied Science and Technology [Politecnico di Torino] [DISAT], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN], Acoustique - IEMN [ACOUSTIQUE - IEMN]
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: International Journal of Mechanical Sciences
International Journal of Mechanical Sciences, 2023, 241, pp.107915. ⟨10.1016/j.ijmecsci.2022.107915⟩
International Journal of Mechanical Sciences, 241
ISSN: 0020-7403
DOI: 10.1016/j.ijmecsci.2022.107915⟩
Popis: Hierarchy provides unique opportunities for the design of advanced materials with superior properties that arise from architecture, rather than from constitutive material response. Contrary to the quasi-static regime, where the potential of hierarchy has been largely explored, its role in vibration mitigation and wave manipulation remains elusive. So far, the majority of the studies concerning hierarchical elastic metamaterials have proposed a self-similar repetition of a specific unit cell at multiple scale levels, leading to the activation of the same bandgap mechanism at different frequencies. On the contrary, here, we show that by designing non self-similar hierarchical geometries allows us to create periodic structures supporting multiple, highly attenuative and broadband bandgaps involving (independently or simultaneously) different scattering mechanisms, namely, Bragg scattering, local resonance and/or inertial amplification, at different frequencies. The type of band gap mechanism is identified and discussed by examining the vibrational mode shapes and the imaginary component of the wavenumber in the dispersion diagram of the unit cell. We also experimentally confirm this by performing measurements in the lowest frequency regime on a 3D printed structure. Hierarchical design strategies may find application in vibration mitigation for civil, aerospace and mechanical engineering.
International Journal of Mechanical Sciences, 241
ISSN:0020-7403
Databáze: OpenAIRE