Real-time Collision Risk Estimation based on Stochastic Reachability Spaces

Autor: Unmesh Patil, Alessandro Renzaglia, Anshul Paigwar, Christian Laugier
Přispěvatelé: Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: ICAR 2021-International Conference on Advanced Robotics
ICAR 2021-International Conference on Advanced Robotics, Dec 2021, Ljubljana, Slovenia. pp.1-6, ⟨10.1109/ICAR53236.2021.9659485⟩
ICAR 2021-International Conference on Advanced Robotics, Dec 2021, Ljubljana, Slovenia. pp.1-6
DOI: 10.1109/ICAR53236.2021.9659485⟩
Popis: International audience; Estimating the risk of collision with other road users is one of the most important modules to ensure safety in autonomous driving scenarios. In this paper, we propose new probabilistic models to obtain Stochastic Reachability Spaces for vehicles and pedestrians detected in the scene. We then exploit these probabilistic predictions of the road-users' future positions, along with the expected ego-vehicle trajectory, to estimate the probability of collision risk in real-time. The proposed stochastic models only depend on the velocity, acceleration, tracked bounding box, and the class of the detected object. This information can easily be obtained through off-the-shelf 3D object detection frameworks. As a result, the proposed approach for collision risk estimation is widely applicable to a variety of autonomous vehicle platforms. To validate our approach, initially we test the stochastic motion prediction on the KITTI dataset. Further experiments in the CARLA simulator, by reproducing realistic collision scenarios, have the goal of demonstrating the effectiveness of the collision risk assessment and are compared with an alternative approach.
Databáze: OpenAIRE