Phase Separation for the Long Range One-dimensional Ising Model
Autor: | Pierre Picco, Immacolata Merola, Marzio Cassandro |
---|---|
Přispěvatelé: | INFN, Università dell'Aquila, Dipartimento di Ingegneria e Science dell'Informazione e Matematica (DISIM), Università degli Studi dell'Aquila (UNIVAQ), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences Ferromagnetic Ising systems 01 natural sciences symbols.namesake Magnetization 60K35 82B20 82B43 Phase segregation Phase (matter) 0103 physical sciences Long range interaction 0101 mathematics Gibbs measure Mathematical Physics Mathematical physics Phase transition Physics Spins 010102 general mathematics Order (ring theory) Statistical and Nonlinear Physics Mathematical Physics (math-ph) Cluster expansion Ferromagnetism Peierls estimates symbols Contours Ising model 010307 mathematical physics Spontaneous magnetization |
Zdroj: | Journal of Statistical Physics Journal of Statistical Physics, Springer Verlag, 2016, 167 (2), pp.351-382. ⟨10.1007/s10955-017-1722-1⟩ Journal of Statistical Physics, 2016, 167 (2), pp.351-382. ⟨10.1007/s10955-017-1722-1⟩ |
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-017-1722-1⟩ |
Popis: | Dedicated to the memory of Enza Orlandi.; International audience; We consider the phase separation problem for the one--dimensional ferromagnetic Ising model with long--range two--body interaction, $J(n)=n^{-2+\a}$ where $n\in \N$ denotes the distance of the two spins and $ \alpha \in ]0,\a_+[$ with $\a_+=(\log 3)/(\log 2) -1$. We prove that given $m\in ]-1,+1[$, if the temperature is small enough, then typical configuration for the $\mu^{+}$ Gibbs measure conditionally to have a empirical magnetization of the order $m$ are made of a single interval that occupy almost a proportion $\frac{1}{2}(1-\frac{m}{m_\b})$ of the volume with the minus phase inside and the rest of the volume is the plus phase, here $m_\b>0 $ is the spontaneous magnetization. |
Databáze: | OpenAIRE |
Externí odkaz: |