Analyzing complex single molecule emission patterns with deep learning

Autor: Michael J. Mlodzianoski, Sheng Liu, Abhishek Chaurasia, Fang Huang, Donghan Ma, Peiyi Zhang, Eugenio Culurciello
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature methods
ISSN: 1548-7105
1548-7091
Popis: A fluorescent emitter simultaneously transmits its identity, location, and cellular context through its emission pattern. We developed smNet, a deep neural network for multiplexed single-molecule analysis to enable retrieving such information with high accuracy. We demonstrate that smNet can extract three-dimensional molecule location, orientation, and wavefront distortion with precision approaching the theoretical limit and therefore will allow multiplexed measurements through the emission pattern of a single molecule.
Editor’s summary The deep neural network smNet enables extraction of multiplexed parameters such as 3D position, orientation and wavefront distortion from emission patterns of single molecules.
Databáze: OpenAIRE