Aggregation equations with gradient potential as Radon measure and initial data in Besov‐Morrey spaces
Autor: | Marta L. Suleiman, Juliana Conceição Precioso, Andréa Prokopczyk |
---|---|
Přispěvatelé: | Universidade Estadual Paulista (Unesp) |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Web of Science Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
ISSN: | 1099-1476 0170-4214 |
DOI: | 10.1002/mma.6355 |
Popis: | Made available in DSpace on 2020-12-10T20:00:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-06-01 In this work, we present conditions to obtain a global-in-time existence of solutions to a class of nonlinear viscous transport equations describing aggregation phenomena in biology with sufficiently small initial data in Besov-Morrey spaces and gradient potential as a Radon measure. We also study the self-similarity and asymptotic stability of solutions at large times. Univ Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil Univ Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil |
Databáze: | OpenAIRE |
Externí odkaz: |