Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem

Autor: Soeren Strauss, Matthew D. B. Jackson, Olivier Hamant, Hao Xu, Salva Duran-Nebreda, Benoit Landrein, Daniel Kierzkowski, Iain G. Johnston, Richard S. Smith, George W. Bassel
Přispěvatelé: University of Birmingham [Birmingham], Max Planck Institute for Plant Breeding Research (MPIPZ), Université de Montréal (UdeM), Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), BBSRC DTP BB/M01116X/1 MIBTPBiotechnology and Biological Sciences Research Council (BBSRC)BB/L010232/1BB/J017604/1BB/N009754/1Leverhulme grant MIBTP RPG-2016-049Birmingham Fellowship DFG Plant MorphoDymanics Research Unit FOR2581Natural Sciences and Engineering Research Council of CanadaRN000758German Research Foundation (DFG)Sonderforschungsbereich 680
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Cell Systems
Cell Systems, Elsevier, 2019, 8 (1), pp.53-65.e3. ⟨10.1016/j.cels.2018.12.009⟩
ISSN: 2405-4712
2405-4720
DOI: 10.1016/j.cels.2018.12.009⟩
Popis: Summary The control of cell position and division act in concert to dictate multicellular organization in tissues and organs. How these processes shape global order and molecular movement across organs is an outstanding problem in biology. Using live 3D imaging and computational analyses, we extracted networks capturing cellular connectivity dynamics across the Arabidopsis shoot apical meristem (SAM) and topologically analyzed the local and global properties of cellular architecture. Locally generated cell division rules lead to the emergence of global tissue-scale organization of the SAM, facilitating robust global communication. Cells that lie upon more shorter paths have an increased propensity to divide, with division plane placement acting to limit the number of shortest paths their daughter cells lie upon. Cell shape heterogeneity and global cellular organization requires KATANIN, providing a multiscale link between cell geometry, mechanical cell-cell interactions, and global tissue order.
Graphical Abstract
Highlights • Examination of global cellular order using 3D imaging and network science • Cells in the Arabidopsis SAM lie upon many shortest paths • Shortest wall divisions in native tissue generates emergent global order • Native cell shape, geometry, and microtubule structure are required for this emergence
The control of cell division plane orientation is becoming increasingly well characterized. How these local rules scale to generate global emergent properties in tissues is less well understood. Combining 3D imaging and network science in the shoot apical meristem of Arabidopsis revealed the presence of global topological order, whereby cells are prevented from lying on large numbers of short paths. This property emerges from local geometric divisions minimizing wall length and is dependent upon native cell geometry and microtubule reorganization.
Databáze: OpenAIRE