Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation

Autor: Susan Gibbs, Etty H. de Jong, Lenie J. van den Broek, Frank B. Niessen, Willem M. van der Veer
Přispěvatelé: Oral Cell Biology, Orale Celbiologie (ORM, ACTA), Dermatology, Plastic, Reconstructive and Hand Surgery, CCA - Immuno-pathogenesis, MOVE Research Institute
Rok vydání: 2015
Předmět:
Zdroj: Experimental Dermatology, 24(8), 623-629. Wiley-Blackwell
Experimental dermatology, 24(8), 623-629. Wiley-Blackwell
Experimental dermatology, 24(8), 623-629. Blackwell Publishing Ltd
van den Broek, L J, van der Veer, W M, de Jong, E H, Gibbs, S & Niessen, F B 2015, ' Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation ', Experimental Dermatology, vol. 24, no. 8, pp. 623-629 . https://doi.org/10.1111/exd.12739
ISSN: 0906-6705
DOI: 10.1111/exd.12739
Popis: Hypertrophic scar formation is a result of adverse cutaneous wound healing. The pathogenesis of hypertrophic scar formation is still poorly understood. A problem next to the lack of suitable animal models is that often normal skin is compared to hypertrophic scar (HTscar) and not to normotrophic scar (NTscar) tissue. Another drawback is that often only one time period after wounding is studied, while scar formation is a dynamic process over a period of several months. In this study, we compared the expression of genes involved in inflammation, angiogenesis and extracellular matrix (ECM) formation and also macrophage infiltration in biopsies obtained before and up to 52weeks after standard surgery in five patients who developed HTscar and six patients who developed NTscar. It was found that HTscar formation coincided with a prolonged decreased expression of inflammatory genes (TNF, IL-1, IL-1RN, CCL2, CCL3, CXCL2, CXCR2, C3 and IL-10) and an extended increased expression of ECM-related genes (PLAU, Col3A1, TGF3). This coincided with a delayed but prolonged infiltration of macrophages (type 2) in HTscar tissue compared to NTscar tissue. These findings were supported by immunohistochemical localization of proteins coding for select genes named above. Our study emphasizes that human cutaneous wound healing is a dynamic process that is needed to be studied over a period of time rather than a single point of time. Taken together, our results suggest innate immune stimulatory therapies may be a better option for improving scar quality than the currently used anti-inflammatory scar therapies.
Databáze: OpenAIRE