Modelos matemáticos para o estudo da aderência ao tratamento da tuberculose levando em conta os efeitos do HIV/AIDS e diabetes

Autor: Erick Manuel Delgado Moya
Přispěvatelé: Sergio Muniz Oliva Filho, Alain Pietrus, Nelson Mugayar Kuhl, Diego Samuel Rodrigues, Larissa Marques Sartori, Aymée de Los Ángeles Marrero Severo
Jazyk: angličtina
Rok vydání: 2021
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Popis: In this work, we propose a new mathematical model for the study of the effectiveness of TB treatment taking into account the vulnerable subpopulations, HIV/AIDS and diabetic patients. Our model studies the different types of treatment resistance, multidrug-resistant (MDR TB) and extensively drug-resistant (XDRTB). We use two modeling techniques, ordinary differential equations (ODE) and fractional-order derivatives equations (FDE) in the Caputo sense. The main mathematical and epidemiological properties of the model are investigated. The basic reproduction number (0) in the different subpopulations (diabetics, HIV/AIDS, and those who do not suffer from these diseases) was studied. We present results that allow us to know how the basic reproductive number is affected when we vary the parameters of resistance and recovery together. We performed a sensitivity analysis of the parameters associated with TB. We proved the persistence of tuberculosis in a subpopulation showing the need to apply a control strategy. We formulated and studied an optimal control problem with the objective of reducing resistance to tuberculosis treatment. The controls are focused on reinfection/reactivation, MDR-TB and XDR-TB differentiated into subpopulations. We use the models with ODE and FDE in the formulation of the control problems. In order to study our models, we performed computational simulations. Among the results obtained, we have that drug-sensitive TB reported a greater number of cases with respect to MDR-TB and XDR-TB cases, and MDR-TB cases surpass XDR-TB cases, except in the diabetes subpopulation, which has a growth of XDR-TB cases that surpasses the other compartments of resistant of all the subpopulations. We show the need to pay differentiated attention to these vulnerable subpopulations due to the behavior of resistant cases. Regarding the control study, we obtained that the most effective strategy is to activate all controls and start with a high control. With this strategy we reduced the number of resistant cases significantly and prevented the growth of cases. This work helps health policies on how to act in this disease and these ideas can be applied to other epidemics of respiratory transmission. Neste trabalho, propomos um novo modelo matemático para o estudo da eficácia do tratamento da tuberculose, tendo em conta as subpopulações vulneráveis, o HIV/AIDS e doentes diabéticos. O nosso modelo estuda os diferentes tipos de resistência ao tratamento, multirresistente (MDR-TB) e extensivamente resistente aos fármacos (XDR-TB). Utilizamos duas técnicas de modelagem, equações diferenciais ordinárias (EDO) e derivadas de ordem fracional (EDF) no sentido de Caputo. As principais características matemáticas e epidemiológicas do modelo são investigadas. Foi obtido o número básico de reprodução (0) nas diferentes subpopulações (diabéticos, HIV/AIDS, e aqueles que não sofrem destas doenças). Apresentamos resultados que nos permitem saber como o número básico de reprodução é afetado quando variamos os parâmetros de resistência e recuperação conjuntamente. Realizamos uma análise de sensibilidade dos parâmetros associados à tuberculose. Demonstramos a persistência da tuberculose numa subpopulação num caso particular, mostrando a necessidade de aplicar uma estratégia de controle. Formulamos e estudamos um problema de controle ótimo com o objetivo de reduzir a resistência ao tratamento da tuberculose. Os controles se concentram na reinfecção/reactivação, MDR-TB e XDR-TB diferenciados em subpopulações. Para formular estes problemas, utilizamos os modelos ODE e FDE. A fim de estudar o nosso modelo, realizamos simulações computacionais. Entre os resultados obtidos, temos que o maior número de casos de infectados foram os TB sensíveis, e os casos de MDR-TB ultrapassam os casos de XDR-TB, exceto na subpopulação de diabéticos, que tem um crescimento de casos de XDR-TB que ultrapassa os outros compartimentos de todas as subpopulações. Mostramos a necessidade de prestar uma atenção diferenciada a estas subpopulações vulneráveis devido ao comportamento de casos resistentes. Em relação ao estudo de controle, obtivemos que a estratégia mais eficaz é quando ativamos todos os controles e começamos com um controle elevado. Com esta estratégia, reduzimos significativamente o número de casos resistentes e impedimos o crescimento de casos ao longo do tempo. Este trabalho ajuda as políticas de saúde sobre como agir nesta doença e estas ideias podem ser aplicadas a outras epidemias de transmissão respiratória.
Databáze: OpenAIRE