Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space
Autor: | Seher Kaya, Rafael López |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Popis: | Consider the Lorentz-Minkowski 3-space L 3 with the metric d x 2 + d y 2 − d z 2 in canonical coordinates ( x , y , z ) . A surface in L 3 is said to be separable if it satisfies an equation of the form f ( x ) + g ( y ) + h ( z ) = 0 for some smooth functions f , g and h defined in open intervals of the real line. In this article we classify all zero mean curvature surfaces of separable type, providing a method of construction of examples. MTM2017-89677-P, MINECO/AEI/FEDER, UE |
Databáze: | OpenAIRE |
Externí odkaz: |