Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space

Autor: Seher Kaya, Rafael López
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: Consider the Lorentz-Minkowski 3-space L 3 with the metric d x 2 + d y 2 − d z 2 in canonical coordinates ( x , y , z ) . A surface in L 3 is said to be separable if it satisfies an equation of the form f ( x ) + g ( y ) + h ( z ) = 0 for some smooth functions f , g and h defined in open intervals of the real line. In this article we classify all zero mean curvature surfaces of separable type, providing a method of construction of examples.
MTM2017-89677-P, MINECO/AEI/FEDER, UE
Databáze: OpenAIRE